For a reaction scheme. $A\xrightarrow{{{k_1}}}B\xrightarrow{{{k_2}}}C$ if the rate of formation of $B$ is set to be zero then the concentration of $B$ is given by
$\left( {\frac{{{k_1}}}{{{k_2}}}} \right)\left[ A \right]$
$\left( {{k_1} - {k_2}} \right)\left[ A \right]$
${k_1}{k_2}\left[ A \right]$
$\left( {{k_1} + {k_2}} \right)\left[ A \right]$
The given data are for the reaction :
$2NO(g) + Cl_2(g) \to 2NOCl(g)$ at $298\, K$
$[Cl_2]$ $[NO]$ Rate $(mol\, L^{-1} \sec^{-1})$
$I$ $0.05\, M$ $0.05\,M$ $1 \times 10^{-3}$
$II$ $0.15\, M$ $0.05\,M$ $3 \times 10^{-3}$
$III$ $0.05\, M$ $0.15\,M$ $9 \times 10^{-3}$
The rate law for the reaction is
The order of a reaction which has the rate expression $\frac{{dc}}{{dt}} = K{[E]^{3/2}}{[D]^{3/2}}$ is
Assertion :The order of a reaction can have fractional value.
Reason : The order of a reaction cannot be written from balanced equation of a reaction.
During Kinetic study of reaction $2 A+B \rightarrow C+D$, the following results were obtained :
$A[M]$ | $B[M]$ |
initial rate of formation of $D$ |
|
$i$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$ii$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$ii$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$iv$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
Based on above data, overall order of the reaction is $\qquad$
The decomposition of dimethyl ether leads to the formation of $CH _{4}, H _{2}$ and $CO$ and the reaction rate is given by
Rate $=k\left[ CH _{3} OCH _{3}\right]^{3 / 2}$
The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.
Rate $=k\left(p_{ CH _{3} OCH _{3}}\right)^{3 / 2}$
If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?